
Linden

Generation and Exploitation of

Aggregation Abstractions for

Scheduling and Resource Allocation

Theodore A. Linden

Advanced Decision Systems
1500 Plymouth St.
Mountain View, CA 94043
linden@ads.corn

Michael R. Lowry

Kestrel Institute
3260 Hillview Avenue
Palo Alto, CA 94306

lowry@kes_el.edu

/

J/

/"

Abstract

Our research is investigating abstraction of
computational theories for scheduling and resource
allocation. These theories are represented in a variant
of first order predicate calculus, parameterized multi-
sorted logic, that facilitates specification of large
problems. A particular problem is conceptually stated
as a set of ground sentences that are consistent with a
quantified theory. We axe mainly investigating the
automated generation of aggregation abstractions and
approximations in which detailed resource allocation
constraints are replaced by constraints between

• aggregate demand and capacity. We are also
investigating the interaction of aggregation
abstractions with the more thoroughly investigated
abstractions of weakening operator preconditions. The
purpose of the theories for aggregated demand/capacity
is threefold: first, to answer queries about aggregate
properties, such as gross feasibility: second, to reduce
computational costs by using the solution of
aggregate problems to guide the solution of detailed
problems: and third, to facilitate reformulating theories
to approximate problems for which there are efficient
problem solving methods. We also describe novel
methods for exploiting aggregation abstractions.

Motivation

Domain specific planning and scheduling systems have
achieved a modicum of real world success, and current
efforts are aimed at vastly increasing the size and
complexity of problems which can be handled with
knowledge-based technology. We believe that much of the
power of domain-specific planning and scheduling systems
comes from their use of specialized algorithms at different
levels of abstraction. For example, a resource allocation
problem can often be approximated as linearized upper and
lower bounds at a high level of abstraction, and solved
using linear programming methods in order to identify
bottleneck resources. Domain-specific scheduling systems
use many different kinds of abstraction, not just the
abstraction hierarchies defined by dropping literals from

operator preconditions, as is the case for ABSTRIPS and
most of its progeny. In particular, for large scheduling and
resource allocation problems whose computational
complexity is characterized by resource contention between
many separate tasks, aggregation abstractions of demand
and resource capacity play a more dominant role than
abstraction of operator preconditions. An example is to
aggregate all transportation capacity into a single linear
quantity - total cargo volume. However, the drawback of
domain-specific systems is their lack of flexibility and the
necessity of hand-coding the knowledge.

The objective of our research is to develop the
technology for dynamically 'compiling' domain-specific
scheduling systems from declarative specifications and the
subgoals and constraints that arise during planning and
scheduling. The goal is to achieve the efficiency of hand-
coded domain-specific systems but at the same time
maintain the benefits of domain independent systems which
interpret declarative problem specifications. The benefits of
the latter arise from their generality: because the
assumptions are explicit rather than hard-coded, the system
is more widely applicable, the declarative representation is
more transparent and thus more trusted and more easily
validated, and furthermore the representation is more easily
modified as requirements evolve. The automated synthesis
and selection of abstractions is a key component to
enabling domain-specific systems to be compiled from
declarative specifications.

The next section of this paper describes the underlying
semantics we are using for abstractions, approximations,
and aggregations. The subsequent section describes the
techniques we are developing for generating abstractions and
approximations. The final section describes new techniques
for exploiting aggregation approximations and abstractions.

Semantics of Abstractions,

Approximations, and Aggregations

Semantically, we define an abstraction as a (possibly
partial) mapping from the models of one theory to the
models of another theory. We assume that these mappings
are transitive and reflexive. If a mapping is total and can be
inverted, then the two theories it relates are isomorphic.

133



The intended semantics of a theory determine the
appropriateconsWainls on a valid abswaction.We define the
appropriate abstraction constraints through the converse
mapping: implementation. For loose specifications, the
intended semantics is any model satisfying the theory,
hence a valid implementation is a mapping from the
models of the implementing theory into (but not
necessarily onto) the models of the loose specification.
This is compatible with definitions of abstraction as theory
generalization, i.e. a widening of the class of models. For
this type of semantics, implementation is the same as
theory refinement.

For tight specifications, the intended semantics is a
minimal model (up to isomorphism). Minimal model
semantics correspond to the operational semantics of most
types of logic programming, Minimal model semantics are
also useful for succinctly axiomatizing models with
inductive types, the simplest being the natural numbers.
Hence the appropriate constraint on abstraction is a
mapping from a single concrete model to a single abstract
model. A third type of specification is parameterized,
consisting of a parameter theory, which has many
interpretations, and a body which extends the parameter
theory. The usual intended semantics for this type of
specification is to take all the models of the parameter
theory, and then to extend each one with additional objects,
functions and relations such that this extension is minimal
with respect to all possible extensions consistent with the
body. This third type of semantics is best seen as a tight
specification for each model of the parameter theory, This
type of semantics is most useful when a general
specification is given for a whole class of problems.

We have axiomatized various types of generic resources
using parameterized specifications: consumable resources
(such as fuel), reusable non-shareable resources (such as a
landing strip), synchronized-shareable resources (such as a
cargo ship), and independent-shareable resources (such as a
parking lot). A particular domain theory is built up by
composing instantiations of these generic parameterized
resona:e theories with particular resources.

Syntactically, an abstraction is defined through two
theories and a set of definitions for abstraction functions
from the objects and operations of the concrete model(s) to
the objects and operations of the abstract model(s). The
abstraction functions are defined in the syntax of the union
of the abstract and concrete theccies.

Approximations arise from weakening or strengthening
the criteria for models of a theory. In the context of our
research, this weakening/strengthening is always with
respect to queries or goals. For example, if the goal is to
transport cargo from one country to another given a certain
set of resources, then the satisfaction of a strengthened
approximation guarantees the transportation feasibility of
the original, while the non-satisfaction of a weakened
approximation guarantees the transportation infeasibility of
the original. Strengthening and weakening occur not only
with respect to the truth of sentences but also with respect
to any partial order, such as the total order on the reals

(true/false defines a partial order on the booleans). For
example, approximations can also be upper and lower
bounds on resources required for transportation feasibility.
Given a complex query or goal it is necessary to map
strengthening/weakening of the whole into
strengthening/weakening of the parts. The polarity analysis
for sentences [Manna & Waldinger 86] has been extended
to a polarity analysis for any type of formula ranging over
any domain with a partial order [Smith 92]. Thus given a
complex query with a specified direction of strengthening or
weakening, the constraints on the strengthening/weakening
of the functions and relations in the query can be
mechanically derived.

Aggregations are mappings from collections of objects
with their individual attributes to a whole representing the
collection with attributes for the collective. In theory
aggregations can arise as equivalent conditions for
satisfaction of a goal. For example, in order for a chemical
reaction to occur in a solution the individual molecules
must have sufficient kinetic energy. This constraint on the
attributes of individual molecules can be reformulated into

an equivalent constraint on the temperature of the whole
solution. In the context of the research reported in this
paper aggregations are most often approximations with
respect to a query or goal.

Generation of Aggregation Abstractions

We are using two techniques for automatic generation of
aggregation approximations. The first is based on analysis
of behavioral equivalence: given a goal. two objects are
behaviorally equivalent if they can be mutually substituted
for each other in the achievement of the goaL For example.
for the goal of Wansporting a rifle division, two small cargo
planes are behaviorally equivalent to one large cargo plane.
However, for transporting a heavy armor division only the
large cargo plane has a sufficient girth for tanks and heavy
artillery. Thus for transporting heavy armor divisions two
small cargo planes are not behaviorally equivalent to a
single large cargo plane. This simple example illustrates
that abstractions such as total lift capacity must be
dependent on context in order to be useful.

The result of behavioral equivalence analysis is the
definition of an equivalence relation on the objects of a
domain. In an abstract theory, behaviorally equivalent
objects are identified. Syntactically, the equivalence relation
in the concrete them7 is transformed to an equality relation
in the abstract theory. A number of issues arise in ensuring
that the transformation from a behavioral equivalence
relation to an equality relation is semantically well defined.
particularly for inductively defined types. These issues are
addressed in [Lowry 1989. Lowry 1990].

When behavioral equivalence analysis is applied to a set
of goals, or to a complex domain theory with many
constraints, the result will be a set of behavioral
equivalences. (The behavioral equivalence for the
conjunction of the goals is the intersection of the individual
equivalence relations.) This set can be ordered by inclusion,
defining a partial order on behavioral equivalence relations.

134



Upper and lower bounds exist for each pair of behavioral
equivalence relations; a lattice is defined by including the
universal equivalence relation (all objects equivalent) and
the identity equivalence relation (each object is equivalent
only to itself). This lattice can be more densely ordered by
inheriting ordering relations on the goals and constraints.
For example. ABSTRIPS type orderings on literals in the
preconditions of operators derived through various programs
[Tenenberg 89; Knoblock 89, 90] can be used to order their
corresponding behavioral equivalence relations.

The second technique for generation of aggregation
approximations is through the use of bounding
approximations: given a goal or query, and an abstract
domain theory obtained through behavioral equivalence
analysis, an extended polarity analysis is applied to the
goal(s) with respect to the abstract domain theory. Various
kinds of symbolic bounding approximations are derived by
KIDS through this polarity analysis, which is currently
implemented through a transitive rewriting technique on
formulas called directed inference [Smith 90]. These
approximations include necessary conditions, sufficient
conditions, symbolic upper bounds, and symbolic lower
bounds. These approximation functions are composed with
the abstraction functions derived through behavioral
equivalence analysis to yield the abstraction
(approximation) functions that map the concrete domain
onto the abstract domain.

To derive aggregation approximations, the domain theory
must include generic axioms defining the relation between
aggregate constraints and constraints on individuals. Most
of the resources we are considering are linear: resources
have time-varying capacities which at each instance cannot
be exceeded by the sum of the consumers assigned to that
resource. The axioms for these kinds of generic aggregation
constraints, together with a particular domain theory, are
transformed by the polarity analysis into definitions of
possible aggregation approximations.

Like the behavioral equivalence abstractions, the
aggregation approximations derived through polarity
analysis can be ordered by strength. Furthermore, directed
inference, because it is a transitive rewriting technique.
automatically generates part of this ordering relation. The
composition of the lattice of behavioral equivalence
relations and the ordering on aggregation approximations
again yields a lattice. We are investigating techniques for
this composed lattice to be implicitly defined rather than
explicitly generated.

Exploiting Resource Abstractions

For very large resource allocation and scheduling problems
that are solved interactively, some form of greedy algorithm
is often appropriate. In this section, we illustrate the use
of resource abstraction hierarchies to enhance the
opportunities for finding a linear ordering of allocation and
scheduling decisions that achieves good results within the
context of a greedy algorithm. The same resource
abstraction hierarchies can also be used to enhance the

variable ordering heuristics used with other search
strategies.

The example described later in this section shows that

resource abstractions can enable a successful linear ordenng
of resource allocation decisions where no such ordering
exists without the abstractions. The resource abstractions
allow allocation decisions (assignments of resources to
operations) to be made in steps down the resource
abstraction hierarchy; first an abstract resource is allocated
to an operation, later, this decision is refined to a more
specific resource. Each allocation of an abstract resource is
essentially a reservation for an unspecified instance of that
abstract group of resources. By making the reservation
early while deferring more specific resource choices, the
deferred decisions can take advantage of information that
becomes available as other decisions are made.

The cost of using resource abstraction hierarchies is the
additional checking needed to maintain consistency of the
allocation as it is built incrementally. Each allocation
decision must be checked to ensure that it does not overuse
the resource that is being assigned. With abstract
resources, each decision must be checked not only against
the resource being assigned but also against the more
abstract resources.

To formalize these concepts, assume we have a resource
abstraction hierarchy in the form of a lattice (R, ,,=) where
R is a set of resource types and ,,= is the extends
relation which is a partial ordering defined on R meaning
"is more specific than (or equal to)." In the example
discussed later in this section, the specific resources are
seaports and R consists of individual seaports and selected
sets of seaports. The lattice relation on R is membership
or subset. For example, Norfolk ,, tank-loading seaports ,,
East Coast seaports. Similarly. Baltimore ,, mid-Atlantic
seaports.

Given a set of specific resources, the power set of these
resources is a candidate lattice; however, this is typically a
bad candidate because it would involve exponential cost in
checking resource assignments against the more abstr_t
nodes. While a narrow lattice can be developed at design
time; it is likely to be far more effective to choose
abstractions that are tailored to the specific problem
instance using the techniques discussed previously of
behavioral equivalence analysis and aggregation
approximations.

Figure 1 depicts a small portion of a simplified problem
involving military crisis action deployments. A large
number of force modules (such as all the equipment
associated with a brigade) are to be shipped through East
Coast ports. Two of the hundreds of such force modules
(FMI5 and FM35) are identified in the figure. The
problem addressed in this example is to plan the
deployment without excessive congestion at the ports
(other aspects of the overall problem involve scheduling of
transports and other resources).

135



2/
Figure 1: Problem of assigning seapov.s to transportation

tasks

The two force modulescan be shipped throughany of 4
different ports, labeled B, N, S. and J. The dashed lines
between the force modules and the ports that are suitable for
shipment are labeled with the utility of using this route.
That utility summarizes the current state of information
about thecostof ground transportationto theport.the
locationsofavailabletransportships,characteristicsofthe
ports, and other factors.

If this port selection problem could be isolated from
other aspects of the overall crisis action planning problem,
it could be solved by existing OR algorithms.
Unfortunately, there are many complex dependencies
between the port selection and the scheduling of other
resources that require the port selection decisions to be
interleaved with other decisions within an overall multi-
user. interactive construction paradigm. Within this
contexL the port selection is done with a greedy algorithm,
and a goal is to use the locally available information to
order the allocation decisions.

This example focuses on deciding whether to choose a
port for FMI5 before or after choosing one for FM30.
Without abstraction levels, neither ordering can be
successful under all interactions with other demands on the
port resources. If we use the simple greedy approach and
assign to FMI5 first because it can achieve a higher utility,
then the arbitrary choice that has be made between B and N
may prevent FM35 from obtaining its best choice. (We
can't choose B knowing that FM35 prefers N because we
are assuming there are many other force modules that are
also competing for both B and N, and many of them may
have higher priority than FM35.) On the other hand, if
the assignment is made to FM35 first, it may choose port
N. but that could be the cause of FMI5 not getting either
of its good choices. This problem of ordering these two
allocation decisions (and the decisions about all other pairs
of force modules) might be avoided by using statistical
look-ahead techniques [Fox 89] that project the contention

at the ports and may allow FMI5 to choose fLrst and make
a non-arbitrary choice between B and N. Separating the
decisions across abstraction level gives additional
opportunities to be successful with a greedy algorithm, and
appears to be especially useful in conjunction with
statistical look-ahead techniques. Note that no technique
can make a greedy algorithm successful all the time.

Two abstractions on the seaports are shown in Figure
l--mid-Atlantic ports and M-1 loading ports. For the
abstractions to be effective, the utility function should
often be more homogeneous across different instances of
the abstract resource than across the entire domain of the
resources. This can be a goal when creating abstractions
dynamically.

The mid-Atlantic port abstraction enables an ordering of
the port allocation decisions for these two force modules
that will almost always be successful:

I) Reserve a mid-Atlantic port for FMI5 (assuming it
competes successfully with other force modules for these
ports).

2) Reserve an M-I loading port for FM35 (assuming it
competes successfully with other force modules for these
ports).

3) Assign N to FM35 assuming it preserves all
reservations for both mid-Atlantic and M-I loading ports
and competes successfully for N with the other force
modules.

4) Assign to FMI5 whichever instance of a mid-
Atlantic port is left over. (The reservation guaranteesthat
somemid-Atlantic port will be left for FMIS)

The reservation that FM13 has for a mid-Atlantic port
allows a lower wiority force module to be given precedence
over the higher priority module in step three--as long as
the reservation is preserved.

This four step ordering of the decisions about these two
force modules often achieves a good solution without
backtracking. Similar reasoning for other pairs of force
modules can be used to order the other decisions made by a
greedy algorithm_but there are no guarantees that a good
ordering can be found for all pairs of decisions.

136



Bibliography
[Fox 89] Mark S. Fox et al, "Constrained Heuristic Search",

Proc. IJCAI-89, Morgan Kaufmann Publ.
[Knoblock 89] Craig A. Knoblock. "A Theory of Abstraction

for Hierarchical Planning", Change of Representation and
Inductive Bias. ed. D.P. Benjamin. Kluwer 1989

[Knoblock 90] Craig A. Knoblock, "Learning Problem-

Specific Abstraction Hierarchies". Proc. of Workshop on
Change of Representation and Problem Reformulation;
Menlo Park, CA March 1990

[Linden 89] Theodore A. Linden. "Planning by
Transformational Synthesis," IEEE Expert, 4,2 Summer.
1989, pp. 46-55.

[Linden 90] Theodore A. Linden. "Transformational Synthesis:

A Paradigm for Building Large-Scale Planning
Applications." Planning Systems for Autonomous Mobile
Robots. ed. D. P. Miller and D. J. Atkinson, Prentice Hall,
1989.

[Lowry 89] Michael R. Lowry, "STRATA: Problem
Reformulation and Abstract Data Types", in Change of

Representation and Inductive Bi_s, Edited by Paul Benjamin,
Kluwer Academic Publishers 1989

[Lowry 89] Michael R. Lowry, "Algorithm Synthesis through
Problem Reformulation". PhD Thesis, Stanford University,
1989

[Lowry 90] Michael R. Lowry, "Abstracting Domains with
Hidden State". in Proc. of Workshop on Automatically
Generating Abstractions and Approximations, AAAI-90

[Manna & Waldinger861 Manna. Z. and Waldinger.R. Special
Relationsinautomateddeduction.JorunalofttheACM 33, I

pp. 1-59.
[Smith-Lowry-89]Smith.D.R. and Lowry, M.R., Algorithm

Theories and Design Tactics, in Proceedings of the
[nternational Conference on Mathematics of Program
Construction, LNC5-375, Springer-Verlag, Berlin, June

1989, 379-398 (to appear in Science of Computer
Programming, 1990).

[Smith-90l Smith, D.R., KIDS: A Semi-Automated Program
Development System, in IEEE Transactions on Software

Engineering special issue on Formal Methods, September
1990.

[Smith-921 Smith, D.R., Connecting Specification
Morphisms, in Proceedings of the International Conference
on Mathematical Theory of Computation.

[Tenenberg g9] Josh Tenenberg. "Abstracting First-Order
Theories", Change of Representation and Inductive Bias, ed.
D.P. Benjamin. Kluwer 1989

137


